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There is a growing amount of interest in learning about users’ task patterns and task switches in daily 
life. This paper presents a novel method of detecting task switches based on the frequency of 
interaction with windows on a desktop computer. The results of a two week user study of its accuracy 
are also presented, along with possible applications for this type of system.  
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1. INTRODUCTION 

Current HCI research is moving away from the traditional application–centric computing model towards a more 
activity–based approach. These new research initiatives have several different goals such as interruption recovery, 
determining interruptability, intelligent agents, and task archival. The common thread among much of this research 
is the need to accurately determine what task a user is performing, and by extension, determine when each task 
begins and ends. Current techniques used for this purpose include the use of external sensors (e.g., [3, 6]), 
application usage (e.g., [6]), and explicit user input (e.g., [7]). However, Czerwinski et al. [1] found that 69% of user 
task switches were either self–initiated (40%) or the result of moving on to the next task on a task list (19%). Since 
there are no external indicators when one of these switches occurs, these two categories of task switches are 
difficult to detect using external sensors. While user input could improve accuracy, requiring users to explicitly 
indicate changes in their tasks is intrusive and, since it is often tangential to their work practices, easily forgotten. 
 
We present a new technique that uses the frequency of user interaction with desktop windows to infer when it is 
most likely that a task switch is occurring. We describe a user study we designed to test the validity of this 
approach and present its results. Finally we discuss the advantages and disadvantages of our approach as well as 
its possible applications. 

2. INFERRING TASK SWITCHES USING WINDOW MANIPULATION FREQUENCY 

There is a significant body of research that shows that users are very particular about the layout of windows on 
their desktop. As part of their work on the Rooms virtual workspace [5], Henderson and Card suggested that users 
have a “working set” of windows active at any given time. By moving between the windows of the tools 
(applications), users are implicitly defining this working set of windows. Studies [8, 9] of the window management 
behaviour of computer users found distinct differences in visible windows when users switched between tasks 
when compared to window switching during a single task. Users are as interested in hiding windows irrelevant to 
their current task as they are in displaying (and working with) relevant ones. Within–task switching was also found 
to involve fewer window manipulations than a switch between major tasks. 
 
When a user switches between tasks, he/she opens the necessary task windows to his/her favourite positions —
this is not restricted to opening new windows and can occur even if the user is merely rearranging pre–existing 
windows into a new configuration. We hypothesize that this activity produces window operations at a different 
frequency when compared to normal work. We use low-level observations of windows manipulations and their 
frequency distribution to determine when a task switch might be taking place. We believe that this technique can 
provide excellent indications of task switching without requiring explicit user input. 
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3. SYSTEM DESIGN 

We have designed a background application that uses window manipulation frequencies to determine when a task 
switch occurs. The program tracks window events such as create, activate, maximize, minimize, hide, show and 
destroy by programmatically hooking into window system events that are publicly available on the Microsoft 
Windows operating system. This event information is time–stamped and augmented with details of the id, name, 
caption and class of the generating window before being sent to the detection algorithm and added to a log file. 

3.1 Detection Algorithm 
Our detection algorithm begins by filtering the window events so that only the events of top–level windows are 
used. The timestamps are then used to calculate the average time between window events for a given task. The 
system also calculates the simple moving average of the time between the last k interactions. When the ratio 
between the overall task average and the moving average exceeds a certain threshold, the system generates a 
new task event and resets the averages. 
 
Example: Consider a situation where the algorithm is evaluating the n+1th window event. ti is the time between the 
ith and (i-1)th event: 
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Empirical testing has shown that a moving average of the last 7 windows (k = 7), coupled with threshold values of 
0.67 (lower limit) and 1.5 (upper limit) provides a good compromise between accurate task detection and avoiding 
false positives. Further improvements may be possible by using an exponential weighted average or by 
dynamically altering the threshold and k values based on past performance. 

3.2 User Interface 
Once the system detects a task switch it displays a small popup window in the bottom right corner of the screen 
(Figure 1). The popup asks the user if he/she has changed tasks and, in the case of a switch, what that new task 
is. If the user confirms the switch, the system registers it as a successful detection and resets its averages to detect 
the next task. If the user either cancels or ignores the popup, the system registers it as a false positive. If there is 
no interaction from the user, the popup automatically disappears after 20 seconds and the program tries to detect 
the next task switch without resetting its averages. In order to minimize the disturbance to the user, the system was 
set up so that it would not display more than one popup every 5 minutes. The choice of the 5 minute interval was 
based on the belief that most users tasks would last for longer that 5 minutes [4]. By using this time out we wished 
to catch most of the task switches while simultaneously reducing user irritation at frequent interruptions. 

 
FIGURE 1: A screenshot of the application’s task switch confirmation popup window 

3.3 Reinforcement Learning 
Since users told the system what task they were performing, we were able to use reinforcement learning to tune 
the threshold limits of the detection algorithm for a given task. If the system correctly identified a task, we applied 
positive reinforcement and reduced the threshold values for detection; for false positives, we increased the 
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threshold value. The feedback applied was inversely proportional to the number of past reinforcements the system 
has received. This created damped oscillations in the threshold values before settling around the optimal values. 

4. EVALUATION 

4.1 Study Design 
We evaluated our software by deploying it with six participants for a period of two weeks. The participants 
consisted of two professors (P1 and P2), three graduate students (G1, G2, and G3) and one IT professional (IP). 
All the participants were experienced computer users and used Microsoft Windows as their primary operating 
system. The software was installed on their primary machines for a period of two weeks, during which they were 
asked to enter the name of their current task whenever the software correctly noted a task switch. The participants 
were told about the reinforcement learning and were encouraged to train the system by giving it feedback. Once 
the study was complete, we conducted a semi–structured interview with the participants during which we asked 
them about their task management styles and the software’s effectiveness in picking out a task switch. 

4.2 Findings 
Of the six participants, all participated for a full two weeks (in some cases voluntarily extending participation to over 
3 weeks). By the end of the study, we had detected 1033 task switches (Table 1) from the six users, with 422 
(40.85%) being confirmed as accurate. However since the individual subjects used their computers for differing 
lengths of time during the study, we also calculated the average accuracy across the users (50.12%). 
 

Subject Switches detected Switches confirmed Accuracy (%) 
Professor 1 (P1) 57 54 94.74 
Professor 2 (P2) 76 43 56.58 
Graduate Student 1 (G1) 367 123 33.51 
Graduate Student 2 (G2) 217 117 53.92 
Graduate Student 3 (G3) 91 37 40.66 
IT Professional (IP) 225 48 21.33 

TABLE 1: this is another example of a legend 
 

Participants P1 and P2, who perform similar duties, had an accuracy of 95% and 57%, respectively. P1 was very 
appreciative of the accuracy and said that the software was able to find almost all her task switches. P2, on the 
other hand, was concerned that the software was unable to detect task switches if he switched between tasks very 
quickly. He also noted that there were occasions that the software erroneously detected a task switch when he 
switched windows within a larger task. We believe that the lower accuracy for P2 was a due to a combination of his 
fast task switching and the 5–minute timeout programmed into the software. Since P2 would often switch tasks 
within 5 minutes, the popup would appear only after the 5–minute timeout had expired. 
 
The accuracy of detection for G1, G2 and G3 was 34%, 54% and 41%, respectively. The relatively low accuracy for 
these participants can be partially explained by their use of instant messaging (IM) software. Unlike P1 and P2, 
these participants were regular IM users and would often chat on IM while concurrently working on their primary 
task. This complex multi–tasking, along with the bursty nature of IM conversations, led to several task switch 
notifications being generated due to IM windows. In most of these cases, the participants would often either cancel 
or ignore the popup because they did not perceive IM as a separate task. 
 
Participant IP was an entry level IT professional who primarily wrote and documented software code. While the 
window tracking system gave IP the lowest accuracy (21%), he was also its most enthusiastic supporter. In fact, IP 
was so impressed with the accuracy of the switch detection that he went on to use the log files of the detected task 
switches to fill out his weekly project time sheets. When questioned about the system, IP said that while it did not 
miss any task switches, it would sometimes be triggered while switching between windows of subtasks. 

5. DISCUSSION 

Despite the wide variation in the accuracy, this study has demonstrated the feasibility of using a window 
manipulation frequency–based approach to detecting task, switches. One of the most important things that we 
have learned from this study is that the system must adapt to users work habits. The observed variation in 
detection accuracy can be explained by differences in work patterns. For example the 5 minute time out affected 
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only P2 since he switched tasks much faster that the other users. G1, G2 and G3 were mainly affected by the IM 
windows and asked to have IM excluded from the window tracking. When questioned about their IM use the users 
felt that they were not unduly hampered by the notifications – this is contrary to [2], who showed that IM message 
notifications have a reliably harmful effect on the primary task.  
 
Currently the system cannot distinguish if a user moves to a different task within the same window–the most 
common example of this is while using web browsers where the user may use the same window for anything from 
online banking to checking email. We intend to include URL information in future algorithms to detect task switches 
within a browser. Future work also includes tailoring the window tracking to suit individual users and their work 
habits. Possibilities include allowing the system to filter out specific windows such as IM and dynamically altering 
the size of the moving average window and the popup timeout based on user feedback. Dynamic adaptability may 
also allow this technique to track when users change between subtasks [10] instead of only top level tasks. 

6. APPLICATIONS 

The potential applications of our window manipulation frequency based task switch detection are extensive. One of 
the most important applications is in deciding the user’s interruptibility at a given time. Research [2, 10] has shown 
that the best time to interrupt a users is either early on in a task or while switching between sub–phases of a task. 
Since our system uses only window notification messages it does not have the privacy concerns of [7] while 
simultaneously avoiding the need for external sensors [3, 6]. The ability to spot a task switch without the need to 
identify the task itself will also increase user acceptance. Additionally, the computational cost of calculating a 
simple moving average is much lower than traditional machine learning based techniques. 
 
One unintended application of our system is in supporting time management. Knowledge workers who use a 
computers as their primary tool and have to keep track of hours spent on specific projects will benefit from a 
system that can detect a task switch. As shown in the study, subject IP realized this application of the program and 
co–opted our logs to fill out his time sheets. Other applications of our work include intelligent agents which could 
use this technique to determine whether a users actions are part of a new task or a part of the current task. This 
ability to distinguish between tasks will also be very useful in activity support and task archival systems. 

7. CONCLUSIONS 

Our findings show that it is possible to get highly accurate measurements (over 90% in some cases) of task 
switches based purely on window manipulation frequency. A two–week user study of software implementing the 
technique showed that it has great promise and has applications in several fields of research. 
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